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SUMMARY

In a world where most emerging and reemerging infectious
diseases are zoonotic in nature and our contacts with both
domestic and wild animals abound, there is growing awareness
of the potential for human acquisition of animal diseases. Like
other Pasteurellaceae, Pasteurella species are highly prevalent
among animal populations, where they are often found as part
of the normal microbiota of the oral, nasopharyngeal, and up-
per respiratory tracts. Many Pasteurella species are opportunis-
tic pathogens that can cause endemic disease and are associated
increasingly with epizootic outbreaks. Zoonotic transmission
to humans usually occurs through animal bites or contact with
nasal secretions, with P. multocida being the most prevalent
isolate observed in human infections. Here we review recent
comparative genomics and molecular pathogenesis studies that

have advanced our understanding of the multiple virulence
mechanisms employed by Pasteurella species to establish acute
and chronic infections. We also summarize efforts being ex-
plored to enhance our ability to rapidly and accurately identify
and distinguish among clinical isolates and to control pasteu-
rellosis by improved development of new vaccines and treat-
ment regimens.
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INTRODUCTION

We now live in an era where two-thirds of human infectious
diseases and three-quarters of emerging or reemerging in-

fectious diseases are zoonotic in origin, i.e., diseases caused by
animal-associated pathogens that can be shared with humans (1–
4). Coupled with the globalization of air travel and commerce and
the megamobilization of the food and trade industries, the spread
of zoonotic diseases poses a threat to global public health and
biosecurity (2, 4–10). With this backdrop, there are rising con-
cerns among health care officials, policy makers, and the general
public about human acquisition of zoonotic diseases from close
encounters with pets and other wild or domestic animals (5, 8,
10–16). Over 60% of U.S. households have at least one pet (17,
18). Although cats and dogs still rank highest in the U.S. pet pop-
ulation (17), the popularity of nontraditional or exotic pets is
growing (9, 19–21). Combined with the expanding impact of
changes in land usage and other anthropogenic activities affecting
wildlife habitats (22) and the associated movement of and expo-
sure to animals and animal products (11, 12, 23, 24), these trends
are thought to contribute to the increased risk of transmission of
known and novel zoonoses (9, 14, 22–30).

Of the hundreds of bacterial species known to commonly re-
side in the oral, nasal, and respiratory cavities of animals (31–33),
Pasteurella species are among the most prevalent commensal and
opportunistic pathogens found worldwide in domestic and wild
animals (34). Pasteurellosis (symptomatic infection with Pasteu-
rella) is a high-impact disease in livestock, according to the World
Animal Health Organization (OIE) (www.oie.int). In both ani-
mals and humans, Pasteurella species, most notably P. multocida,
are often associated with chronic as well as acute infections that
can lead to significant morbidity (manifested as pasteurellosis,
pneumonia, atrophic rhinitis, dermonecrosis, cellulitis, abscesses,
meningitis, and/or hemorrhagic septicemia [HS]) and mortality,
particularly in animals (34–36).

Most likely due to routine prompt prophylactic treatment of
animal bite wounds with antibiotics, pasteurellosis is still a rela-
tively uncommon cause of mortality in humans (37, 38), even
though deaths due to pasteurellosis have increased in recent years
in the United States (Fig. 1). Nevertheless, pasteurellosis is often
associated with significant morbidity due to complications result-
ing from animal bite or scratch wounds or from respiratory expo-
sure (39–46). Roughly 300,000 (1%) annual visits to the emer-
gency rooms in the United States are due to animal bite or scratch
wounds (45, 47). Pasteurella species are isolated from infections
resulting from 50% of dog bites and 75% of cat bites (48–50), and
indeed, it has been observed “. . . that seemingly trivial animal
bites can result in severe complications and that P. multocida is an
important cause of infection . . .” (49). Other contact with animals,
such as kissing or licking of skin abrasions or mucosal surfaces
(eyes, nose, and mouth), can also result in infection with P. mul-
tocida (20, 38, 51–53). In nearly all reported cases of P. multocida
infection, evidence of prior animal exposure or contact was indi-
cated.

In this review, we provide an overview of the prevalence and
pathogenic potential of P. multocida, particularly how it relates to
animal infections, human-animal interactions, transmission from
animal reservoirs, and subsequent human disease. We also sum-
marize what is currently known about the phylogenetic relation-
ships of P. multocida with other members of the Pasteurellaceae

and the pathogenomics, cellular microbiology, and molecular vir-
ulence mechanisms that enable P. multocida to cause both acute
and chronic disease in animals and humans. Finally, we summa-
rize current antibiotic treatment modalities and efforts toward
increasing our options for prevention and control of transmission
through animal vaccine development.

PASTEURELLA AND THE PASTEURELLACEAE FAMILY

Comparative Genomics of the Pasteurellaceae

The genus Pasteurella is a member of the Pasteurellaceae family,
which includes a large and diverse group of Gram-negative Gam-
maproteobacteria, whose members are not only human or animal
commensals and/or opportunistic pathogens but also outright
pathogens (34, 54, 55). Ancestral relationships among bacterial
taxa within the Pasteurellaceae family can be inferred by compar-
ing their 16S rRNA genes (Fig. 2). Comparative genomic and phy-
logenetic analyses of the Pasteurellaceae have revealed that many
members of this highly diverse family were poorly classified (54,
56). Indeed, a number of the Pasteurellaceae have already been
renamed: Histophilus somni (formerly Haemophilus somnus, H.
agni, and H. ovis) (57), Mannheimia (formerly Pasteurella) hae-
molytica (58), Bibersteinia (formerly Pasteurella) trehalosi (59),
Actinobacillus (formerly Haemophilus) pleuropneumoniae (60),
Actinobacillus (formerly Pasteurella) ureae (61), Aggregatibacter
(formerly Actinobacillus) actinomycetemcomitans (62), Aggregati-
bacter aphrophilus (formerly Haemophilus aphrophilus and H.
paraphrophilus) (62), Aggregatibacter (formerly Haemophilus) seg-
nis (62), Avibacterium (formerly Haemophilus) paragallinarum
(63), Avibacterium (formerly Pasteurella) gallinarum (63), Avibac-
terium (formerly Pasteurella) volantium (63), Avibacterium (for-
merly Pasteurella) avium (63), Basfia (formerly Mannheimia) suc-
ciniciproducens (64), and Gallibacterium (formerly Pasteurella)
anatis (65). However, as can been seen from the 16S rRNA phylo-
genetic tree shown in Fig. 2, further reclassification or renaming
may be warranted.

Based on conserved signature sequence insertions and deletions
(indels) that are specific for certain subgroups of Pasteurellaceae
species, it has been proposed that the Pasteurellaceae family be
divided into at least two clades (66). Two other independent stud-
ies produced similar but not identical 2-clade clustering of the
Pasteurellaceae by using 12 intracellular proteins (67) or 50 con-
served proteins (68). However, this attempt to classify the Pasteu-

FIG 1 Pasteurellosis deaths in the United States, 1993 to 2006. Data are based on
CDC general mortality tables (http://www.cdc.gov/nchs/nvss/mortality_tables.htm).
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FIG 2 Phylogenetic relationships of Pasteurella multocida and related Pasteurellaceae bacteria based on 16S rRNA genes. The maximum-likelihood phylogenetic tree was
calculated by using MEGA5 (575), based on full-length 16S rRNA gene sequences. Nodes with bootstrap values of greater than 30% after 1,000 replicates are indicated.
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rellaceae into two clades reflects only the phylogenetic relation-
ships of the genes examined resulting from more recent events
such as horizontal gene transfer. Such clustering is not congruent
with the phylogenetic tree derived from 16S rRNA gene compar-
ison (as shown in Fig. 2), and it is also not reflective of known host
specificities or disease manifestations.

The first Pasteurellaceae member to be genome sequenced was
Haemophilus influenzae strain Rd KW20 (69). Since then, the
complete or nearly complete genomes of over 28 members of the
Pasteurellaceae family have been sequenced, including at least six
complete genomes from the species Pasteurella multocida. Phylo-
genetic analysis of 16S rRNA genes alone shows that these six P.
multocida strains tightly cluster and are distant from H. influenzae
(Fig. 3A). Genome-wide comparison based on the fractions of
common genes (Fig. 3B) or based on similarity among the com-
mon genes (Fig. 3C) revealed subtle differences in relatedness
among these six P. multocida strains. This likely reflects the dy-
namics of frequent gene transfer events among the pool of P. mul-
tocida strains. While phylogenetic analysis can readily distinguish
P. multocida strains from other Pasteurellaceae, ancestral relation-
ships among P. multocida strains are more difficult to define. Con-
sequently, comprehensive genome-wide comparisons (i.e.,
pathogenomics) are necessary to account for the extent of diver-

sity observed for pathogenic phenotypes among the P. multocida
isolates (Table 1).

Pathogenomics of P. multocida

A number of genes or gene clusters, identified through signature-
tagged transposon mutagenesis (70, 71), in vivo expression tech-
nology (72), and whole-genome expression profiling (73–75),
have been implicated as important for virulence of P. multocida
(76). Some of these genes encoding putative virulence factors are
universally present in all six P. multocida genomes, and these in-
clude genes encoding outer membrane proteins (ompA, ompH,
and ompW), iron acquisition genes (exbB-exbD-tonB, hgbA, and
fur), thiamine metabolism genes (tbpA, thiP, and thiQ), and
the adhesion/Flp pilus assembly gene cluster (tadZABCDEFG).
Homologs of the tad gene locus are also present in many other
Pasteurellaceae and Gram-negative bacteria, where they play key
roles in biofilm formation, colonization, and pathogenesis (77).
Potential virulence genes in P. multocida can also be inferred from
a list of virulence genes found in the phylogenetically related H.
influenzae (78).

Unique genes correlated with virulence are present in almost
each of the sequenced P. multocida genomes. For instance, P. mul-
tocida strain 36950, isolated from bovine lung, contains the large

FIG 3 Phylogenetic comparison among selected Pasteurella multocida and Haemophilus influenzae species with completed genome sequences. (A) Phylogenetic
relationships among the strains based on 16S rRNA genes. The maximum-likelihood tree was calculated by using MEGA5 (575), based on the 16S rRNA genes
from each of the indicated strains of P. multocida (Pm) or H. influenzae (Hi) with complete genome sequences. Nodes with bootstrap values of greater than 30%
after 1,000 replicates are indicated. (B) Genome-wide comparison based on the fractions of common genes among the strains. The neighbor-joining tree was
calculated by using MEGA5 with distances derived from the fraction of genes that are common between each pair of genomes and have �90% coverage in
BLASTN alignment. (C) Genome-wide comparison based on the similarity among the common genes among the strains. The neighbor-joining tree was
calculated by using MEGA5 with distances derived from the average BLASTN identity for common genes with �90% coverage in alignment.

TABLE 1 Genome features and phenotypes of sequenced P. multocida strains

Strain Source Typing
GenBank accession no.,
size (Mbp)

No. of:

Genes Proteins

P. multocida subsp. multocida Pm70 Oviduct of chicken with fowl
cholera

Capsular serotype F:3, nontoxinogenica AE004439.1, 2.26 2,089 2,012

P. multocida subsp. gallicida X73 Fowl cholera Capsular serotype A:1, nontoxinogenica CM001580.1, 2.27 2,128 2,069
P. multocida subsp. gallicida P1059 Turkey liver Capsular serotype A:3, nontoxinogenica CM001581.1, 2.31 2,168 2,111
P. multocida 36950 Bovine respiratory infection Capsular serotype A,b nontoxinogenic,a

ICEPmu1c
CP003022.1, 2.35 2,202 2,098

P. multocida 3480 Lung of swine with pneumonia Capsular serotype A,b nontoxinogenica CP001409.1, 2.38 2,296 2,223
P. multocida subsp. multocida HN06 Diseased swine Capsular serotype D, toxinogenica CP003313.1, 2.41

(pHN06, 5,360 bp)
2,361 2,265

a Based on presence or absence of the toxA gene, which encodes PMT.
b Based on sequence homology to strains X73 and P1059 within the cap locus, which carries genes for capsule biosynthesis (Fig. 4).
c ICEPmu1, integrative conjugative element of P. multocida (79, 80).
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integrative conjugative element (ICE) ICEPmu1 of 82 kbp that
carries 88 genes, including 12 antimicrobial resistance genes (79,
80). This ICE is not found in any of the other five sequenced
genomes; however, a similar ICE was found in Histophilus somni
2336 and Mannheimia haemolytica PHL213, both of which are
bovine respiratory pathogens and thus share the same host niche
as P. multocida strain 36950. Strain 36950 also has a DNA segment
of 9.5 kbp that contains several genes involved in xylose metabo-
lism (xylA, xylF, xylG, xylH, and xylR). Homologs of this region
are present in P. multocida strains P1059, P52VAC, HN06, and
3840 but are absent in strains Pm70 and X73.

P. multocida strain Pm70 contains a unique 13.9-kbp region,
carrying genes PM1935 to PM1949, that is homologous to a gene
cluster found in members of other Pasteurellaceae genera, includ-
ing H. influenzae R2846 (13 kbp), H. somni 2336 (5 kbp), and
Gallibacterium anatis UMN179 (5 kbp). However, strain 36950 is
the only other strain of P. multocida that contains a partial se-
quence (2.1 kbp) homologous to this gene cluster.

The genome of the toxinogenic P. multocida strain HN06 has a
unique 18-kbp region carrying 14 genes (PMCN06_2106 to
PMCN06_2119), including the toxA gene for P. multocida toxin
(PMT) (the toxin responsible for atrophic rhinitis) and several
phage-related genes. A 6.7-kbp segment of this sequence lacking
the toxA gene is present in the genome of the nontoxinogenic
strain 3480. Additionally, there are two regions, a 4.8-kbp region
carrying 53 genes (NT08PM_0048 to NT08PM_0100) and a 16-
kbp region carrying 22 genes (NT08PM_0622 to NT08PM_0643),
in strain 3480 that are also found in strain HN06, albeit frag-
mented and displaced in multiple loci around the chromosome,
further supporting the close relatedness of these two strains.
However, there is a 37-kbp fragment (NT08PM_1283 to
NT08PM_1334) that is so far unique to strain 3480 and another
33-kbp fragment (PMCN06_1378 to PMCN06_1438) that is so
far unique to strain HN06, for which no homologous sequences
are found in any of the other strains. It is noteworthy that multiple
phage-related genes are present in all of these strain-specific
unique sequences, including the segment harboring the toxA gene.

Detection, Identification, and Typing of P. multocida

Selective culturing and phenotyping of P. multocida. Until very
recently, conventional methods for detection and diagnosis of in-
fection with Pasteurella (pasteurellosis) relied on observation of
the bacterium by microscopy using staining and/or isolation by in
vitro culturing on selective media, followed by phenotypic and/or
serological characterization (54). P. multocida is a small, pleomor-
phic, Gram-negative, nonflagellated coccobacillus. Microscopic
analysis of fresh cultures or clinical specimens using Leishman’s
stain, methylene blue, or Giemsa stain shows bipolar-staining
rods. P. multocida isolates are aerobic or facultative anaerobic and
grow well at 37°C on 5% sheep’s blood (the preferred culture
medium) in dextrose-starch, casein-sucrose-yeast (CSY), choco-
late, Mueller-Hinton, or brain heart infusion (BHI) agar (81, 82);
however, there is no growth on MacConkey agar. Most clinical
isolates are catalase, oxidase, indole, and ornithine decarboxylase
positive. Most isolates also ferment sucrose, glucose, and maltose.
Media containing vancomycin, clindamycin, gentamicin, neomy-
cin, kanamycin, and/or amikacin, either singly or in combination,
have been used to select for Pasteurella (83–86), but the results are
not always consistent.

Although P. multocida grows well on blood agar and chocolate

agar, it is easily overgrown by other microbiota in sputum and
might be easily misidentified, as it resembles other Gram-negative
bacteria such as Francisella tularensis, Yersinia species, and other
Pasteurellaceae species (87–89), such as Haemophilus influenzae
(90) and on first examination even Neisseria species (91). Pheno-
typic characterization of P. multocida, based on morphology, car-
bohydrate fermentation patterns, and serology, is also challenging
(92, 93). Identification of P. multocida using biochemical strips
(such as API 20E/20NE, Minitek, or Oxi/Ferm strips) remains a
rapid method commonly used in diagnostic laboratories, but it
has limited accuracy (94, 95) and can lead to confusion of P. mul-
tocida with Mannheimia (Pasteurella) haemolytica (95), H. influ-
enzae, or other Pasteurellaceae species (90, 96, 97). For example,
two reports of identification of P. gallinarum as a possible cause of
disease in humans were later suspected as possible misidentifica-
tion as Haemophilus aphrophilus due to similarities in phenotype
and/or biochemical properties (98). The authors concluded that
the API 20NE system does not differentiate among P. gallinarum,
H. aphrophilus, and A. actinomycetemcomitans. Most Haemophilus
species, particularly H. influenzae, require chocolate agar or some
other source for X and V factors, which Pasteurella species do not.
However, a number of Haemophilus species will grow sufficiently
on most blood agar media for growth to be discernible, thus
necessitating further differentiation from Pasteurella by testing for
X and V factor dependency (97). In all, no conclusive diagnostic
identification is possible through selective culturing, phenotyp-
ing, or direct microscopic examination alone.

Serotyping and ribotyping of P. multocida. P. multocida iso-
lates are classified based on a combination of capsular polysaccha-
ride serotyping, which distinguishes isolates into one of the five
capsular serogroups A (hyaluronic acid) (99), B (arabinose, man-
nose, and galactose) (100), D (heparin) (101, 102), E (uncharac-
terized), or F (chondroitin) (101, 102). Isolates are also subtyped
based on their lipopolysaccharide (LPS), which separates isolates
further into 16 serovars (103, 104). Isolate designations usually
consist of a capsular serogroup letter followed by a somatic sero-
var number (e.g., A:1, A:2, A:3, B:2, etc.). The polysaccharide
structure and biosynthetic genes have been determined for three
of the capsular serotypes (99, 101, 102, 105, 106), as well as for the
LPSs from a number of isolates (103, 107–117).

PCR- plus sequence-based ribotyping analysis using universal
primers for 16S rRNA genes, genomics, and other DNA sequence-
based molecular techniques have now superseded phenotypic
methods for identification, characterization, and differentiation
of P. multocida and other Pasteurellaceae (54, 55, 92, 106, 118–
120). Conventional ribotyping based on PCR amplification alone
is still generally considered a reliable and discriminative method
for characterizing clinical isolates of P. multocida (54, 121). How-
ever, PCR amplification of 16S rRNA genes, followed by sequenc-
ing and sequence comparison against known ribosomal data-
bases, such as the NCBI or the RDP (http://rdp.cme.msu.edu)
database, is now the predominant and most reliable method of
taxonomically identifying isolates at the genus and species levels.

The availability of additional sequence data for comparing var-
ious non-16S rRNA gene clusters has enabled the design of more
sophisticated PCR methods for taxonomic identification (16S
rRNA gene sequence-based ribotyping) and subtyping (virotyp-
ing using non-16S rRNA genes such as those associated with vir-
ulence traits) of P. multocida isolates (120–122). For example, the
cap locus has been sequenced for capsule serotypes B:2 (strain
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M1404), A:1 (strain X73), A:3 (strain P1590), and D (strain
HN06) (Fig. 4) and has been used as a basis for serotyping (106,
118). As a consequence, the cap loci of previously untyped P. mul-
tocida strains can now be subtyped based on clustering with the
corresponding loci of known serotypes (118, 123–125).

PASTEURELLA DISEASE IN ANIMALS

Pasteurellosis Prevalence

Pasteurella species cause numerous endemic and epizootic dis-
eases of economic importance in a wide range of domestic and
wild animals and birds. P. multocida is a common commensal or
opportunistic pathogen found in the upper respiratory tracts of
most livestock, domestic, and wild animals (34), including chick-
ens (126–131), turkeys (132, 133), and other wild birds (123, 134–
144), cattle and bison (121, 145–147), swine (34, 148–151), rabbits
(152–154), dogs (41, 155–157), cats (domestic house cats as well as
large wild cats, such as tigers, leopards, cougars, and lions) (39,
42–46, 49, 157–166), goats (125, 139, 167, 168), chimpanzees
(169), marine mammals (seals, sea lions, and walruses) (170), and
even komodo dragons (171, 172). The manifestation and patho-
logical symptoms associated with Pasteurella infection, or “pas-
teurellosis,” range from asymptomatic or mild chronic upper re-
spiratory inflammation to acute, often fatal, pneumonic and/or
disseminated disease.

Transmission is through direct contact with nasal secretions,

where a chronic infection ensues in the nasal cavity, paranasal
sinuses, middle ears, lacrimal and thoracic ducts of the lymph
system, and lungs (173, 174). Preexisting or coinfection with other
respiratory pathogens, particularly Bordetella bronchiseptica (149,
150, 175–180) or Mannheimia haemolytica (147), significantly en-
hances colonization by P. multocida, leading to more severe dis-
ease. Interestingly, a recent report showed that P. multocida inhib-
its the growth of M. haemolytica in vitro (181). Primary infection
with respiratory viruses or with Mycoplasma species also predis-
poses animals to secondary infection with P. multocida and/or M.
haemolytica (176, 182–186). Environmental conditions, stress,
and the overall health of the animal also appear to play important
roles in disease severity and likelihood of transmission (147, 187,
188).

Pasteurellosis Pneumonia and Atrophic Rhinitis

The predominant syndrome of pasteurellosis in endemic and
epizootic infections of wild and domestic animal populations is
upper respiratory disease in the form of rhinitis (irritation and
inflammation of nasal mucosa and nasal secretions) and lower
respiratory disease in the form of pneumonia (in cattle also re-
ferred to as bovine respiratory distress syndrome). Symptoms of
pasteurellosis in most animals range from mild to severe (44, 178,
189–198). Mild symptoms include sneezing, copious mucous se-
cretions, mild rhinitis, mild pneumonia with labored breathing,
and fever but can progress to disseminated disease (hemorrhagic
septicemia [further discussed in “Pasteurellosis and Hemorrhagic
Septicemia” below]) and/or atrophic rhinitis (atrophy of nasal
mucosa, seromucinous glands, and turbinate bones) associated
with toxinogenic strains. Pasteurellosis pneumonia without
symptoms of atrophic rhinitis is most often caused by nontoxino-
genic capsular type A strains of P. multocida (147, 151, 199, 200).

P. multocida is often endemic in rabbit colonies and swine
herds, where the pneumonia and rhinitis disease is commonly
called “snuffles” (148, 154). In more severe cases, symptoms prog-
ress toward atrophic rhinitis and, in rare cases, renal impairment,
testicular and splenic atrophy, and hepatic necrosis. Atrophic rhi-
nitis in rabbits can also result in overall weight loss, growth retar-
dation, and frequently death. Toxinogenic capsular serotype D
and some serotype A strains of P. multocida are associated with
more severe symptoms of atrophic rhinitis in rabbits and swine
(34, 148, 178, 194, 195, 201), with serotype D more prevalent in
swine and serotype A more prevalent in rabbits.

The primary overt symptom of atrophic rhinitis in swine and
rabbits is twisting or distortion of the snout due to atrophic rhi-
nitis (148, 202–204), manifested as bone resorption characterized
by atrophy of the nasal turbinate bones (Fig. 5). Pathological

FIG 4 Phylogenetic comparison of the capsule biosynthesis (cap) gene locus
among selected Pasteurella multocida strains. The maximum-likelihood tree
was calculated by using MEGA5 (575) with distances derived from genes
within the cap locus of P. multocida serotypes B:2 (strain M1404), A:1 (strain
X73), A:3 (strain P1590), and D (strain HN06), as well as the cap loci from
serotype A strains 3480 and 36950.

FIG 5 Atrophic rhinitis in swine. Shown are transverse sections of the nasal cavities of pigs exhibiting pathological symptoms of atrophic rhinitis ranging from
mild (left panel) to moderate (middle panel) to severe (right panel) caused by infection with toxinogenic P. multocida. (Photos courtesy of the University of
Illinois Veterinary Diagnostics Laboratory, Urbana, IL; reproduced with permission.)
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changes may be mild and restricted to the snout with no overt
clinical signs other than shrinkage of the ventral turbinates. How-
ever, infection can develop into more severe and progressive dis-
ease with complete loss of all turbinate bone structures and
septum deviation, which often results in twisting, wrinkling, dis-
tortion or shortening of the snout, sneezing, snuffling, nasal dis-
charge, and teary eyes (205–207).

Pasteurellosis and Hemorrhagic Septicemia

In cattle and other hoofed animals (ungulates), P. multocida causes
predominantly respiratory disease. Along with Mannheimia haemo-
lytica, Histophilus somni, Mycoplasma bovis, and Arcanobacterium
pyogenes, P. multocida is implicated as a common pathogen asso-
ciated with bovine respiratory disease (BRD), or “shipping fever”
(nonsepticemic pneumonia) (208, 209). M. haemolytica is the
most predominant isolate from cases of BRD and is associated
with acute fulminating, fibrinopurulent pleuropneumonia with
hemorrhage or coagulation necrosis due to intense LPS-induced
inflammation and production of a ruminant-specific, pore-form-
ing leukotoxin (208). P. multocida serotype A:3 is isolated from
about 35% of shipping fever cases in the United States (209), man-
ifesting usually as chronic bovine fibrinopurulent bronchopneu-
monia and occasionally with fibrinonecrosis (Fig. 6) (147, 208).
Hemorrhagic septicemia caused by serotype A strains is only oc-
casionally seen in North America (147, 210, 211); however, the
proportion of severe hemorrhagic BRD incidences attributed to P.
multocida, particularly as coinfection with M. haemolytica or other
pathogens, appears to be rising (121, 146, 176, 183, 208, 209, 212).
External stressors such as poor food supply, close confinement,
and wet climate conditions are also thought to enhance transmis-
sion through contact with nasal secretions of infected animals or
fomites (147).

Hemorrhagic septicemia (HS) is a serious acute, highly fatal,
and highly prevalent disease in livestock, especially cattle and buf-
falo, in tropical regions of the world, including Asia, India, Africa,
southern Europe, and the Middle East (93, 147, 210, 211, 213–
220). HS is caused primarily by P. multocida serotypes B:2 and E:2
and is thought to occur at the later stages of pasteurellosis disease
(reviewed in reference 221). HS is observed less commonly in
swine, sheep, goats, deer, and elk and then is mostly associated
with serotype B:2 strains (214, 221). HS may be asymptomatic or

unnoticed until onset of the acute stage, which is characterized by
rapid onset (within a few hours) and progression. Symptoms usu-
ally begin with fever, lethargy, and edema with copious salivation,
lacrimation (teary eyes), and nasal discharge, rapidly followed by
respiratory distress, septic shock with widespread hemorrhaging,
and death within 1 to 3 days. Antibiotic treatment can be effective
at early stages, but since acute clinical signs of sepsis manifest so
quickly, mortality is nearly 100% after onset (221).

Despite extensive research, very little is known to date about the
virulence factors and mechanisms involved in the transition from
mild chronic pasteurellosis to acute severe disseminated disease.
Recently, a mouse model of HS caused by P. multocida serotype
B:2 has been developed (222), which might enable further explo-
ration of the roles of different host immune cells and host factors
as well as bacterial factors in dissemination of the bacteria in the
host.

Pasteurellosis and Fowl Cholera

P. multocida subsp. multocida is the most predominant cause of
fowl cholera worldwide in a variety of avian species (34, 134, 223),
although P. multocida subsp. septica and P. multocida subsp. gal-
licida are also sometimes isolated (223). Capsular serotype A
(mainly A:1, A:3, and A:4) is highly correlated to disease predilec-
tion for strains associated with fowl cholera (105, 224–227), al-
though capsular serotypes F and D have also been reported (123,
124, 227, 228). Serotype B:3 is often isolated from avian disease
cases that manifest as sinusitis (229, 230) with symptoms of nasal
discharge, increased lacrimation, swelling, and inflammation. The
respiratory tract appears to be the primary site of infection for fowl
cholera (126, 129, 223, 231), but isolation of P. multocida subsp.
multocida from avian salpingitis has also been reported (232).

Fowl cholera tends to be an asymptomatic or mild chronic si-
nusitis and conjunctivitis (229, 230) or pneumonia-like pasteurel-
losis, but it can suddenly and rapidly develop into a fatal dissem-
inated disease (223). To date, no single bacterial virulence trait or
mechanism has been identified as correlating with observed dis-
ease incidence or severity (223, 233), but environmental and host
factors appear to contribute to onset and outcome severity.

PASTEURELLA AND OTHER PASTEURELLACEAE DISEASES IN
HUMANS

Pasteurellosis as a Zoonotic Infection in Humans

Humans acquire Pasteurella infection primarily through contact
with animals, most usually through animal bites, scratches, licks
on skin abrasions, or contact with mucous secretions derived from
pets (19, 20, 36, 40–42, 46, 48, 90, 158, 160, 163, 165, 185, 234–
244). The prevalence of antisera to P. multocida was 2-fold higher
in healthy individuals with occupational or pet exposure than in a
control group with no reported exposure (245), indicating that
animal exposure increases the likelihood of subclinical carriage or
infection. A survey of the literature over the past 30 years suggests
that 20 to 30 human deaths due to pasteurellosis occur annually
worldwide, but as mentioned above, this rate appears to be rising
(Fig. 1), and in nearly all cases death appears to result as a compli-
cation from infection acquired through animal exposure. Among
the Pasteurella species, P. multocida is the predominant human
pathogen encountered, especially in severe disease cases (235,
239), although P. canis may be more prevalent with dog bites (48,
246–248).

FIG 6 Bovine pasteurellosis bronchopneumonia lung. Shown is an image of a
lung lobe from a calf exhibiting pathological symptoms of bronchopneumo-
nia, including extensive hemorrhagic lesions (dark areas), caused by infection
with P. multocida. (Courtesy of Peter G. Moisan, Veterinary Diagnostic Labo-
ratory, Kansas State University; reproduced with permission.)
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Common symptoms of pasteurellosis in humans from animal
bite wounds are swelling (edema), cellulitis (diffuse, localized in-
flammation with redness and pain), and bloody or suppurative/
purulent exudate (drainage) at the wound site (39, 41, 48, 49, 160,
165, 241, 249–255). Leukocyte and neutrophil counts are typically
high at the infection site, and inflammation develops very rapidly.
In more severe cases, pasteurellosis can rapidly progress to bacte-
remia (fulminant sepsis) (41, 161, 235, 241, 251, 256–266) and
other complications such as osteomyelitis (inflammation of the
bone) (155, 165, 267–269), endocarditis (inflammation of the heart)
(256, 263, 270–285), and meningitis (inflammation of the meninges)
(53, 90, 159, 163, 165, 264, 286–293).

Respiratory infection in humans is relatively uncommon but
can occur in patients with chronic pulmonary disease (44, 48, 152,
239, 247, 294–296). In these instances, pasteurellosis can present
as severe bilateral consolidating pneumonia and also can cause
lymphadenopathy (swelling of the lymph nodes), epiglottitis, and
abscess formation (295, 297).

Transmission and Prevalence through Contact with Pets

Infections with Pasteurella requiring medical intervention com-
monly arise as a result of bite or scratch wounds from pets, pre-
dominantly cats and dogs (39, 41, 45, 48, 49, 155–157, 161, 240,
242, 243, 249–251, 254, 255, 257, 258, 267, 298–304), but also
from other domestic animals (305–308). Bite wound infections
with Pasteurella tend to be highly aggressive with skin or soft tissue
inflammation, erythema, local lymphadenopathy, fever, pain, and
swelling often manifesting within 24 h, but they can present as
early as 8 to 12 h (41, 48, 159, 166, 309). Pasteurellosis has an
overall mortality rate of 25 to 30% among reported human cases
of animal bite wounds (38, 90, 163, 288, 289, 310), with bactere-
mia found in 40 to 63% of all pasteurellosis patients and menin-
gitis plus neurological complications found in 17 to 29% of pa-
tients.

Pasteurella infections that do not result from bite wounds are
likewise most often associated with P. multocida strains (44, 90,
163, 310) and usually involve contact of skin lesions or naso-
oropharynx or other upper respiratory mucosa with animals or
animal secretions, particularly in young children, the elderly, or
pregnant or immunocompromised individuals (40, 44, 53, 87, 90,
165, 235, 240, 241, 244, 255, 257, 258, 261, 277, 288, 289, 291, 307,
311–339).

Neonatal meningitis (usually with septicemia) has been re-
ported (90, 91, 288, 313, 340–342), but in nearly all cases the most
likely route of transmission was attributed to direct exposure to
pets or other domestic animals. Vertical transmission from
mother to child was reported rarely (291, 341). Only three in-
stances of human-to-human horizontal transmission have been
reported. In two cases transmission was likely from the father,
who had exposure to chickens (286) or sheep (343), and in the
third case the mother tested negative for P. multocida colonization
but the grandmother tested positive, as did her pet dog (344).

Patients with underlying diseases that contribute to an immu-
nocompromised condition, such as cirrhosis (liver dysfunction)
(39, 43, 241, 244, 249, 255–257, 260, 262, 263, 265, 266, 273, 275–
280, 292, 312, 314, 316, 317, 321, 322, 328, 329, 335, 337, 345–
359), renal failure (kidney dysfunction requiring dialysis or in-
dwelling catheters) (253, 267, 300, 302, 303, 318, 324, 326, 327,
360–366), or HIV-positive status (especially if taking immuno-
suppressive drugs or experiencing other disease conditions) (290,

310, 315, 367–369), have an increased risk of peritonitis, endocar-
ditis, and/or septicemia caused by P. multocida. This is particularly
the case if there is a history of exposure to pets. Indeed, in almost
all of the above-mentioned reports, the authors caution patients
with these conditions about the risks associated with exposure to
pets and/or alert clinicians to consider possible complications
with P. multocida infection for cases with pet ownership or a his-
tory of animal exposure.

It is noteworthy that in human infection cases the subspecies or
serotype of the P. multocida clinical isolate is rarely reported (370).
However, there are a few studies where this has been examined
retrospectively. In one study, 143 isolates collected from human
patients over a 12-year period (1983 to 1994) were biochemically
characterized for distribution at the species and subspecies levels
as well as capsular groups (239). Most of the isolates were deter-
mined to be P. multocida subsp. multocida, with the remaining
being P. multocida subsp. septica, P. multocida subsp. gallicida, P.
canis, P. dogmatis, and P. stomatis. While P. multocida strains were
associated with cat and dog bites, P. canis, P. dogmatis, and P.
stomatis strains were recovered only from dog bites, and P. mul-
tocida subsp. multocida and P. multocida subsp. septica were most
frequently associated with cat bites. Most of the animal bite iso-
lates were non-group A capsular strains (serogroup D) and were
associated more with disseminated disease. Capsular serogroup A
strains were associated more with respiratory infections. Similar
findings were observed for isolates recovered from infected pa-
tients in four other studies involving 159 strains (247), 107 strains
(48), 54 strains (294), and 20 strains (296).

Rare Cases of Zoonotic Transmission through Wild Animals

Although zoonotic transmission from wild animals is relatively
rare, Pasteurella infection is a serious concern in cases of bite
wounds from wild animals. Similar to that for bites from their
smaller domestic relatives, Pasteurella infection is a high risk for
bites from large cats, including lions, tigers, cougars, and others
(159, 162, 164, 166, 293, 371–375). Cases of Pasteurella infections
have also been reported for bites or exposure to mucous secretions
from other wild and domestic animals, including rats, opossums,
horses, and rabbits (166, 259, 287, 295, 376). Although these inci-
dents of severe outcome from zoonotic exposure appear to be
relatively uncommon, it has been proposed based on historical
precedence that there is a potential threat for any pathogen that
exclusively infects animals to evolve into a pathogen that more
readily transmits among animals and humans and then converts
into a bona fide human-specific pathogen (377). It is not hard to
speculate that there is potential for a zoonotic pathogen such as
Pasteurella, which is highly prevalent in animals and can transmit
to humans, to convert into a human pathogen upon acquisition of
additional virulence traits.

Human Diseases Caused by Other Pasteurellaceae

In contrast to Pasteurella, most of the other members of the Pas-
teurellaceae family are primarily animal commensals or enzootic
or epizootic pathogens, with a few notable exceptions which are
primarily human pathogens. These will be discussed in this sec-
tion.

Haemophilus. Haemophilus influenzae is frequently found as a
commensal in healthy adult humans but can cause invasive infec-
tions in humans, which present as cellulitis, arthritis, pneumonia,
sepsis, or meningitis and can often become life threatening. There
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are six identifiable types and some nontypeable strains of H. influ-
enzae associated with human disease. H. influenzae type b (Hib) is
the most prominent form (378). Before introduction of the Hib
vaccine, Hib was responsible for about 20,000 cases of and about
1,000 deaths from severe disease in children annually, but invasive
Hib disease has nearly been eradicated since the introduction of
the Hib conjugate vaccine (379). Other strains of H. influenzae,
particularly noncapsular (nontypeable) strains, remain important
pathogens in humans worldwide (379–381).

H. influenzae biogroup aegyptius is responsible for recurring
outbreaks of seasonal acute, purulent conjunctivitis, more com-
monly known as pink eye (382). In 1984, a new, highly virulent
strain emerged in Brazil that caused a highly lethal disseminated
disease in young children, called Brazilian purpuric fever (BPF)
(382, 383). The infection presented as an acute, purulent conjunc-
tivitis before rapid onset of bacteremia and progression to septic
shock, with mortality rates as high as 70% (383). A pan-genomic
analysis of the invasive BPF isolate with other noninvasive H. in-
fluenzae isolates responsible for conjunctivitis identified signifi-
cant differences in the repertoire of autotransporter adhesins as
well as new fimbrial proteins, which were suggested to contribute
to virulence through altered host-pathogen interactions (382).

Haemophilus haemolyticus is closely related to H. influenzae but
is generally considered to be a nonpathogenic human commensal
found in the pharynges of some individuals (384). However, H.
haemolyticus can be mistaken as nontypeable H. influenzae due to
its lack of a capsule and its variable hemolytic properties on blood
agar (384, 385). Cases associated with invasive clinical disease in
postsurgical patients have been identified using 16S rRNA se-
quencing (386).

Haemophilus ducreyi is a strict human pathogen that naturally
infects genital and nongenital skin (387), causing genital ulcer-
ative disease known as chancroid (388–390). Interestingly, H. du-
creyi is more closely related to the animal pathogens M. haemo-
lytica and Actinobacillus pleuropneumoniae than to other human
pathogens of the Pasteurellaceae family (Fig. 2) (68). Identification
of virulence genes and elucidation of the molecular basis of patho-
genesis in H. ducreyi may provide insight into how a pathogen
could adapt to occupy a unique niche in a human host (390).

Actinobacillus. Most Actinobacillus species are enzootic or
epizootic pathogens; A. hominis and A. ureae are the only known
exceptions, being highly adapted to humans. Both are relatively
uncommon commensals of the human respiratory tract but can
cause infections. A. hominis can cause lower respiratory tract in-
fections that can progress to bacteremia, sepsis, or meningitis and
in severe cases can result in death, particularly in immunocom-
promised individuals (391). Most cases of A. ureae infections are
associated with predisposing factors, such as head trauma, a neu-
rosurgical procedure, liver cirrhosis, alcoholism, diabetes, malnu-
trition, or immunosuppression (392–395). For example, A. ureae
meningitis was found in a number of immunocompromised pa-
tients (392, 394). A. ureae has also been associated with bone mar-
row infection and septic arthritis in a patient with rheumatoid
arthritis taking a tumor necrosis factor alpha (TNF-�) inhibitor
(395).

Aggregatibacter. Aggregatibacter actinomycetemcomitans is a
common periodontal pathogen responsible for periodontitis, a
chronic inflammatory disease that manifests as loss of supporting
connective tissue and alveolar bone around teeth with symptoms
of malodor, gingival bleeding, pain, and swelling (396). It is also a

major pathogen causing endocarditis (397) and brain abscesses
(398). A. actinomycetemcomitans produces two toxins as major
virulence factors responsible for pathogenesis: a pore-forming
leukotoxin (LtxA) that kills white blood cells in gingiva and
thereby helps evade the host immune response during infection
(399) and a cytolethal distending toxin (Cdt) that enters host cells
to cause cell cycle arrest or apoptosis through its DNase activity
and thereby causes extensive damage to gingival tissue (400, 401).

Aggregatibacter aphrophilus is also an oral commensal occa-
sionally found in humans that causes bone and joint infections
and endocarditis in some cases (402). Its genome contains genes
that encode a type VI secretion system (T6SS) as well as several
putative T6SS effector proteins that may contribute to virulence
(403).

PASTEURELLA VIRULENCE MECHANISMS

Survival in the Host Environment

Extensive research activities, including a number of genome and
transcriptome analyses, are beginning to shed light on the viru-
lence mechanisms of P. multocida (reviewed in reference 233).
Several factors appear to be involved enhancing survival in the
host environment: iron acquisition mechanisms that enable in
vivo growth; membrane lipopolysaccharide (LPS) that confers se-
rum resistance; capsule that prevents phagocytosis; surface com-
ponents that provide adherence properties; extracellular matrix-
degrading enzymes such as hyaluronidase, neuraminidase, and
proteases that facilitate colonization and/or dissemination; and in
some highly virulent strains a dermonecrotic toxin (PMT) that
causes atrophic rhinitis and dermonecrosis and modulates the
immune response. This section will explore what is currently
known about the role of each of these mechanisms in P. multocida
pathogenesis.

Nutrient acquisition. During later stages of infection, Pasteu-
rella encounters host niches that require changes in gene expres-
sion for pathways involved in central energy metabolism and in
uptake of various nutrients such as iron and amino acids. Most P.
multocida genes shown to be upregulated during infection are
involved in nutrient acquisition and metabolic processes (404).
Highly virulent strains of P. multocida often secrete various hydro-
lytic enzymes that presumably facilitate nutrient acquisition or
dissemination. Virulent serotype B strains, particularly serotype
B:2 isolates from hemorrhagic septicemia cases, produce a hyal-
uronidase (405, 406). Production of sialidases (neuraminidases),
which scavenge sialic acid from host membrane components and
serve to evade host defenses by blocking mucin action, is also
prevalent in virulent strains of P. multocida (407–410).

Iron acquisition. Iron is an important nutrient for nearly all life
forms. Bacterial pathogens, when in a vertebrate host environ-
ment, will encounter a depletion of iron, triggering release of the
transcriptional control of ferric uptake regulator (Fur), which re-
presses genes under its control in the presence of iron (411). It is
possible that iron acquisition in P. multocida plays an important
role in its survival and pathogenesis in the host, particularly con-
sidering that more than 2.5% (53 coding DNA sequences) of the
Pm70 genes are predicted to encode proteins homologous to
known proteins involved in iron uptake or acquisition (412).
Gene expression profiling under iron-limiting conditions have
identified several iron acquisition genes at increased expression
levels (413), and indeed, different sets of genes appear to be ex-

Pasteurella multocida Pathogenesis

July 2013 Volume 26 Number 3 cmr.asm.org 639

http://cmr.asm.org


pressed in response to the nature of the iron source (414). Many
iron acquisition-related genes have been predicted to be part of
the outer membrane proteome (415). Although iron-dependent
expression profiling of the outer membrane proteome still needs
to be investigated, most of these membrane proteins were shown
to be protective antigens (416).

Some Pasteurellaceae species have strict host specificity. Iron
acquisition system requirements are considered to be an impor-
tant restricting factor for host specificity. For example, the porcine
pathogen A. pleuropneumoniae utilizes porcine transferrin as an
iron acquisition vehicle through binding to a bacterial surface
receptor, which is comprised of the transferrin-binding proteins
TbpA and TbpB. A. pleuropneumoniae binds only porcine trans-
ferrin and not bovine or human transferrin (417). Similarly, the
bovine pathogen M. haemolytica has a transferrin-binding recep-
tor that binds only bovine transferrin (417, 418). It has also been
reported that most strains of H. somni are capable of acquiring
iron only from bovine transferrin through binding to the bipartite
TbpA-TbpB transferrin receptor, but some strains can also utilize
ovine or caprine transferrin through a single-component TbpA2
transferrin receptor (419). Although no TbpA-TbpB homologs
are encoded in the six complete genomes of P. multocida, they all
have genes coding for homologs of the single-component trans-
ferrin receptor and other hemoglobulin/transferrin/lactoferrin
receptor family proteins. In addition, P. multocida strains have
siderophore-independent iron acquisition systems homologous
to the Actinobacillus AfeABCD system (420) and the periplasmic
binding protein-dependent iron transport systems homologous
to E. coli FecBCDE (421), Neisseria FbpABC (422), and Actinoba-
cillus AfuABC systems (423), which can utilize xenosiderophores
for iron acquisition. The presence of multiple iron acquisition
systems in Pasteurella species may account for their ability to in-
fect multiple hosts.

Surface components. (i) LPS. P. multocida lipopolysaccharide
(LPS) confers resistance to serum complement and is a major
virulence determinant (113, 114, 117, 424). Avian strains with
mutations in LPS are highly attenuated in chickens (109, 117). P.
multocida strains express two LPS glycoforms (A and B) that differ
in their inner core structure (114, 117), whereas the outer antigen
structure varies among strains and has been classified into 16 dif-
ferent LPS serovars (107, 109). Protection against P. multocida
infection appears to be serovar specific (108).

(ii) Capsule. P. multocida expresses a hydrophilic capsule that
inhibits phagocytosis and complement-mediated opsonization
(224, 425–427). Loss of capsule biosynthesis results in highly at-
tenuated strains that are no longer serum resistant (105, 224). The
major polysaccharide component of serotype A capsule is hyal-
uronic acid, which is consistent with its structural properties (99)
and sensitivity to hyaluronidase (226, 428). The hexA gene re-
sponsible for capsule export, located in an 11-gene cap locus in the
P. multocida strain X73 (serotype A:1) (226), is required for
growth in both chickens and mice (224). The apparent predomi-
nance of serotype A strains in zoonotic respiratory carriage and
infections in humans (48, 85, 152, 239, 294) has been attributed to
the antiphagocytic properties of the mucoid capsular hyaluronic
acid components (239, 429), which prevent phagocytic clearing
and promote mucosal colonization of the lower respiratory tract
in humans.

In contrast to the serotype A capsule, the serotype B polysaccha-
ride capsule consists of arabinose, mannose, and galactose sugar res-

idues with as-yet-unclear linkages (427). The cexA gene, a homolog of
hexA, is part of a 15-gene capsule (cap) biosynthesis locus and has
been shown to be a virulence determinant for P. multocida strain
M1404 (serotype B:2) in mice (426). Serotype B and E isolates are
infrequently recovered from human infections (239).

Based on sensitivity to mucopolysaccharidases, structural compo-
sition analysis, and cloning and sequencing of the capsule biosynthe-
sis genes, serotype D capsules are comprised of heparin or heparin
sulfate (101, 102, 430), and serotype F capsules are made of chondroi-
tin (101, 430, 431). The capsule biosynthesis gene loci for serotypes A,
D, and F appear to have high similarity with each other but can be
distinguished by multiplex PCR-based typing analysis (106, 118).
Human clinical isolates with serotype D capsules are most often as-
sociated with systemic infections resulting from skin and soft tissue
exposure (48, 85, 152, 239, 247, 294, 296).

Although noncapsular variants may arise through mutational
events, there is evidence that capsule biosynthesis might be tran-
scriptionally regulated (105). Through study of acapsular strains
of P. multocida, a single-site mutation in the fis gene outside the
cap locus was found to prevent capsule production despite the
strains having an intact biosynthetic locus (432), suggesting that
regulation of capsule production is possible through the Fis pro-
tein, a known transcriptional regulator in other bacteria.

(iii) OMPs. Putative adhesins that enhance colonization by P.
multocida have been reported (34, 433–442). OmpA is an outer
membrane protein (OMP) that serves as an adhesin by binding to
host extracellular matrix proteins, such as fibronectin (437, 438,
443). OmpH is a major outer membrane porin that forms a ho-
motrimeric channel and has shown some potential as a protective
antigen (444). OmpH and Pasteurella lipoprotein E (PlpE) are
protective surface antigens associated with P. multocida serotype
A:1, A:3, and A:4 strains isolated from cattle with shipping fever
(445, 446) and from birds with fowl cholera (416). OmpA and
OmpH proteins show considerable heterogeneity, and at least
among avian P. multocida strains, a number of different variants
appear to be associated with certain capsular serotypes (B, D, or F)
(200, 227).

Oma87, an 87-kDa outer membrane protein present in all P.
multocida strains that is expressed in vivo, shares sequence simi-
larity with the surface D15 protective surface antigen of H. influ-
enzae (447). Another protective surface antigen that has been
identified is a 39-kDa adhesion protein (Cp39) present in avian P.
multocida strains P-1059 (serotype A:3) and X-73 (serotype A:1)
(436, 448).

The type IV fimbrial subunit PtfA has been identified and char-
acterized from serotype A, B, D, and F strains (439, 449–451);
however, the role of type IV fimbriae in adhesion, host specificity,
and colonization is not yet clear. On the other hand, an analogous
type IV pilin protein, Tfp, of Pseudomonas aeruginosa has been
shown to bind lung epithelial cells, leading to pathogenic effects in
the host (452).

Growth of P. multocida strains under iron-limited versus iron-
rich conditions showed iron-dependent changes in iron acquisi-
tion genes (413, 414), several of which were identified as encoding
OMPs (453). Further insights about the role of these iron acqui-
sition OMPs in the pathogenic potential of P. multocida could be
gained by more comprehensive outer membrane proteomic anal-
ysis of these proteins in response to various iron and nutrient
conditions. Despite all these reports and studies showing their
potential use as protective antigens for component vaccines (see

Wilson and Ho

640 cmr.asm.org Clinical Microbiology Reviews

http://cmr.asm.org


below), no OMP has yet been shown to be an essential virulence
factor.

(iv) Filamentous hemagglutinin. P. multocida possesses two
filamentous hemagglutinins, FhaB1 and FhaB2 (also named
PfhB1 and PfhB2, respectively) (70, 412). These proteins are sim-
ilar to the LspA1 and LspA2 filamentous hemagglutinins from H.
ducreyi (454), mutations of which have been shown to affect vir-
ulence (455). A similar filamentous hemagglutinin in Bordetella
pertussis and B. bronchiseptica is required for biofilm formation
and colonization of the nose and trachea in mice (456, 457).
FhaB2 in P. multocida has been implicated in virulence (70, 458),
and expression of FhaB2 was found to be reduced by 4-fold in a
nonmucoid P. multocida variant, AL1114 (432). FhaB and its
transporter FhaC form a two-partner secretion system that is sim-
ilar to the FhaB-FhaC system in Bordetella species (456, 459),
LspA-LspB in H. ducreyi (455), and IbpA-IbpB in the pathogenic
Histophilus somni strain 2336 (460), which act to inhibit phagocy-
tosis. Genome-wide comparison showed that the IbpA-IbpB sys-
tem and two other immunoglobulin-binding proteins, p76 and
p120, are absent in the avirulent H. somni strain PT129 (460).

PMT. Once it was discovered that only certain capsular serotype
D and A strains of P. multocida were responsible for chronic tur-
binate atrophy, a large protein toxin was identified, isolated, and
cloned from these strains (148, 194, 196, 461, 462). The purified,
146-kDa P. multocida toxin (PMT), encoded by the toxA gene
located on a putative lysogenic bacteriophage (463), was subse-
quently demonstrated to be the primary agent responsible for the
symptoms of atrophic rhinitis (461, 464–471), as well as a number
of other clinical symptoms associated with P. multocida infection
(189, 190, 192, 461, 464, 470, 472–475). PMT-mediated bone at-
rophy appears to occur through disruption of normal cell signal-
ing processes in bone-generating osteoblasts and macrophage-like
osteoclasts (205, 206, 466, 476–482). In humans, toxin-producing
strains are often isolated from respiratory carriage or infections
(483), but a role for PMT in human pulmonary disease has not yet
been established.

PMT is a member of the dermonecrotic toxin family of G-
protein-deamidating toxins, whose molecular mechanism of ac-
tion has been thoroughly reviewed (201, 484–487). Mounting ev-
idence suggests that PMT enters mammalian cells (reviewed in
reference 486) and exerts its pathogenic effect on cells through
modulation of multiple signaling pathways (reviewed in reference
485). Recent studies have revealed that in addition to the � sub-
unit of the heterotrimeric Gq protein (488–490), PMT also acts on
other G proteins, i.e., G11, Gi, and G12/13 (488–494). A number of
studies have implicated PMT as a modulator of host immunity
(475, 495–498) and cellular differentiation and proliferation (476,
477, 485, 499–507). Interestingly, because of its potent mitogenic
and proliferative properties, there has been speculation that expo-
sure to PMT might play a role in cancer predisposition as a long-
term consequence of infection with toxinogenic P. multocida (485,
495, 499, 504, 505, 508–510).

DNA Uptake

A number of the Pasteurellaceae are competent for DNA uptake, and
two high-frequency uptake signal sequences (USS) have been identi-
fied for members of the Pasteurellaceae (67): the USS (AAGTGCG
GT) found in P. multocida, H. influenzae, Aggregatibacter
actinomycetemcomitans, Histophilus somni, and Mannheimia
succiniciproducens and the closely related USS (ACAAGCGGT)

found in Haemophilus ducreyi, Actinobacillus pleuropneumoniae,
and M. haemolytica. The common USS and conservation of all
competence genes among these family members suggest a
common ancestral origin of competence.

The mechanism for DNA uptake and organization of the com-
petence apparatus of P. multocida can be inferred from the better-
characterized H. influenzae system (511). All six completed P.
multocida genomes harbor the entire set of competence-related
genes, including comABCDE, comF, comEA, comEC/rec2, and orfJ.
The presence of competence as well as a universal USS favors the
ready exchange of virulence traits through horizontal gene trans-
fer among these family members and accounts for many of their
similar pathogenic properties. It is interesting that only four fam-
ily members (H. somni, H. ducreyi, M. succiniciproducens, and M.
haemolytica) appear to have recently acquired mutations resulting
in defective competence systems (67).

Transformation of P. multocida usually requires P. multocida-
specific vectors (512). Most effective transformation methods for
genetic manipulation of P. multocida involve conjugation using
shuttle vectors (513–515) or the use of transposons (70, 516). The
capsules of some P. multocida strains are known to hinder trans-
formation of nonspecific vectors, but the presence of mucolytic
enzymes or coculturing with bacteria producing capsule lytic en-
zymes has been reported to enhance the competence of capsulated
P. multocida X73 (513). This finding implies that enhanced com-
petence and acquisition of new virulence genes could occur under
various infection conditions, including coinfections or polymi-
crobial infections.

Antibiotic Resistance

While not all strains of P. multocida harbor plasmids, plasmids of
various sizes (usually 1 to 6 kb but up to 100 kb) have been iden-
tified in isolates from various sources (517). Most of these plas-
mids confer resistance to various and often multiple antibiotics
(517–531), most frequently �-lactams, tetracycline, chloram-
phenicol, streptomycin, and sulfonamides. In addition to the an-
tibiotic resistance genes, a few of these plasmids have also been
found to carry genes with other functions, such as plasmid mobi-
lization, segregation, or replication genes (522) and putative cat-
ion transporter genes (80, 532). Many of the plasmids carrying
antibiotic resistance determinants are transferrable among the
Pasteurellaceae members, as well as other Gram-negative bacteria
(517, 518, 522, 529, 533–536).

Multiple antibiotic resistance genes have been identified on mobi-
lizable or conjugative elements integrated into the chromosomes of
some strains. For example, genes encoding multiple antibiotic resis-
tances have been identified integrated into the chromosome of the
genome-sequenced P. multocida strain 36950 isolated from a case of
BRD that exhibited resistance to all the antibiotics commonly used to
control BRD (80, 537). Interestingly, the 85-kb ICEPmu1 element
carried 88 genes, including 12 different resistance genes that were
distributed between two regions of resistance (80), a 15.7-kb region at
one end of the element and a 9.8-kb region at the other end. ICEPmu1
also contains genes involved in conjugative transfer of the element
and its chromosomal excision/integration, genes encoding putative
metabolic enzymes involved in alcohol, aldehyde, and ketone catab-
olism, and genes encoding a lysozyme-like protein and a copper-
oxidase-like protein (79). A 5.2-kb mobilizable plasmid, pCCK647,
encoding spectinomycin/streptomycin resistance was identified in a
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capsular serotype F strain isolated from a case of bovine peritonitis
(520).

TREATMENT AND PREVENTION

Antibiotics

Broad-spectrum antibiotics that target Pasteurella, as well as other
Gram-negative and Gram-positive bacteria, are the preferred pro-
phylaxis for animal bites, which tend to be polymicrobial in nature
(32, 41, 48, 309). Pasteurella species are not very susceptible to
erythromycin, lincosamides (such as clindamycin), or certain
�-lactams (such as dicloxacillin or cephalexin), so these antibiot-
ics are not recommended as monovalent treatments for animal
bites. Instead, a combination of amoxicillin and the �-lactamase
inhibitor clavulanic acid (Augmentin), doxycycline plus metroni-
dazole for patients with penicillin allergies, or clindamycin plus a
fluoroquinolone (ciprofloxacin, or trimethoprim-sulfamethoxa-
zole combination for children or ceftriaxone for pregnant
women) is the recommended treatment regimen (41, 48, 309).

Vaccination

The relatively low incidence of human pasteurellosis, despite the
high prevalence of Pasteurella species in domestic and wild ani-
mals, supports the premise that Pasteurella is an opportunistic
pathogen for humans. Further support for this comes from stud-
ies examining the carriage and anti-Pasteurella antibody levels in
individuals with occupational or other extensive exposure to ani-
mals (85, 152). Because of the relatively low incidence of human
infection, most immunization or vaccination studies against Pas-
teurella infection have been geared toward controlling animal dis-
ease. Despite considerable effort and ample experimental animal
models, mechanisms of protective immunity against Pasteurella
remain elusive, and so development and evaluation of effective
vaccines have been challenging (34, 449, 538).

Detection of high serum levels of IgG antibodies is not indica-
tive of clearance of or resistance to Pasteurella infection but rather
is indicative of chronic infection (178, 475, 539, 540). Vaccination
using toxin-based component vaccines, bacterins, or live attenu-
ated bacteria is effective against toxin-mediated disease, such as
atrophic rhinitis (449, 471, 541–552). A commercial swine vaccine
based on P. multocida bacterin-toxoid (BT) conferred protective
immunity in rabbits against PMT challenge (553). To prevent
vertical transmission of P. multocida from sows to suckling pigs or
laterally among young weaned animals, sows are often vaccinated
once or twice prior to farrowing to induce passive immunity
through colostrum (542, 554–557). However, despite the benefits
of PMT-based vaccination for prevention of atrophic rhinitis and
other disease symptoms in swine and rabbits (543, 544, 553, 555,
557–559), current commercial and experimental vaccines do not
confer complete immunity to P. multocida infection and are not
effective in clearing the bacteria (542, 551, 555). Although PMT
activates dendritic cells, it is a poor adjuvant and appears to sup-
press the antibody response in vivo (497). PMT is nonetheless an
effective immunogen, and mutant derivatives have shown poten-
tial for vaccine development against atrophic rhinitis (543, 544,
549–551, 555, 557, 560, 561).

Several of the Pasteurella outer membrane proteins are putative
virulence factors and potential targets for vaccine development
(reviewed in reference 433). For example, antisera against the
outer membrane protein Oma87 protected mice against a lethal-

dose challenge of P. multocida (447). Vaccination with recombi-
nant adhesion protein Cp39 from P. multocida strain P-1059 pro-
tected chickens from challenge with strain P-1059 (serotype A:3)
and strain X-73 (serotype A:1) (436, 448). OmpH-specific anti-
bodies were more effective than OmpA-specific antibodies in
curbing P. multocida growth in mice, presumably by enhancing
PMN phagocytosis (562). Full-length OmpH was more effective
than shorter fragments as a vaccine against a swine strain of P.
multocida (isolated from a case of atrophic rhinitis) in a mouse
challenge model (563). Although OmpA elicits a strong antibody
response, vaccination is not protective in a mouse model of infec-
tion (435). The type 4 fimbrial subunit of serotype A, B, and D
strains has been identified as a potential vaccine candidate (439,
449); however, efficacy as a vaccine has been reported only for the
fimbrial protein from serotype B:2 against hemorrhagic septice-
mia in goats (564).

Using a bioinformatics approach, 98 genes in avian strain Pm70
and 107 genes in the nontoxinogenic porcine strain 3480 were
identified as encoding putative OMPs (415). Of this combined list,
71 recombinant proteins were expressed and purified, albeit most
as insoluble proteins, and tested as vaccine candidates. Only one
protein, lipoprotein E (PlpE), was found to protect against P. mul-
tocida challenge in chickens and mice, which confirmed previ-
ously reported results using the PlpE cloned from the avian sero-
type A:1 strain X-73 (446). However, a plpE knockout mutant
strain retained full virulence (416). Conjugated vaccines com-
prised of multiple antigens, such as OmpH plus PlpE peptides,
have also shown promise (445, 565).

Additional vaccine candidates include the filamentous hemag-
glutinin protein (FhaB2) (566), iron-regulated Omps (567–570),
and LPS (109). Vaccination with peptides derived from FhaB2
protected turkeys from fowl cholera upon challenge with P. mul-
tocida P1059 (566). LPS is a major virulence factor and immuno-
gen of P. multocida, but its potential use and efficacy as a vaccine
candidate is complicated by the structural heterogeneity of the 16
different serovars (109). Several in vivo-expressed surface antigens
have been identified as potential vaccine candidates (72, 538, 571).
A number of these are iron-regulated Omps expressed during P.
multocida infection and have been characterized as potential im-
munogens in challenge studies (568–573). For example, the 96-
kDa heme acquisition system receptor (HasR) protein is a surface-
exposed Omp conserved among most P. multocida isolates. HasR
is expressed under low-iron conditions in vivo and confers protec-
tion against challenge with bovine P. multocida serotype A:3 strain
232 (568). A whole-cell vaccine based on a serotype A:1 strain of P.
multocida that has been inactivated by treatment with high iron
concentrations has also been explored (574).

A few bacterin- and/or toxin-based vaccines are available com-
mercially. For example, Porcillis AR-T DF is a PMT-based vaccine
comprised of a deletion mutant of PMT (�28-148) plus inacti-
vated Bordetella bronchiseptica bacterin. A commercial vaccine
against fowl cholera (chickens and turkeys), sold as Choleramu-
neM, Multimunem, or M-Ninevax-C, is available and is based on
a freeze-dried preparation of a live, avirulent avian isolate of P.
multocida M-9 strain (a serotype A:3-A:4 cross). A trivalent com-
bination vaccine against fowl cholera (for ducks, chickens, and
other poultry) and rabbit pasteurellosis, sold as Landavax, is avail-
able as an inactivated bacterin oil emulsion of P. multocida sero-
type A:1, A:3, and A:4 strains. A tetravalent combination vaccine,
sold as Rhini ShieldTX4, provides four-way protection against
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swine PMT-mediated atrophic rhinitis and respiratory diseases
through a bacterin containing inactivated B. bronchiseptica, Ery-
sipelothrix rhusiopathiae (the causative agent of erysipelas), P.
multocida serotype A, and toxinogenic P. multocida serotype D. A
tetravalent Pasteurella OBP vaccine for cattle that is a formalinized
bacterin of P. multocida serotypes A, D, and E plus M. haemolytica
serotype A:1 is also commercially available.

FUTURE PERSPECTIVES

Extensive genetic, biochemical, and virulence studies of P. multo-
cida and other Pasteurellaceae have provided valuable insights into
the disease processes of these organisms in their natural hosts and
have led to the development of new non-bacterin-based vaccines,
several of which are now available commercially for animal use.
With the impressive advances that have been made, we are at a
cusp in regard to our understanding of the molecular virulence
mechanisms of P. multocida pathogenesis. Pathogenomics and ri-
botyping, in particular, have greatly contributed to our ability to
distinguish among the various clinical isolates for diagnostic pur-
poses and epidemiological studies and have provided glimpses of
the relatedness among the Pasteurellaceae.

In addition to furthering our understanding of the role of cap-
sule and LPS biosynthesis, antibiotic resistance, and PMT produc-
tion in pasteurellosis, genome comparison has begun to identify
additional virulence genes responsible for host specificity and
other phenotypes. Major advances are on the horizon with the
information gleaned from comparison of existing and additional
genomes of P. multocida and other related Pasteurellaceae in the
pipeline, as well as from in vivo transcriptional and protein expres-
sion profiling studies such as RNA-seq and proteomics technolo-
gies. Greater understanding of the molecular and immunologic
mechanisms of pathogenesis will provide insights into the host-
microbe interactions involved in chronic infection and the molec-
ular basis of the transition from subclinical or chronic disease to
acute, disseminated disease. These studies will also provide clues
about the long-term sequelae of exposure to chronic or acute in-
fections with these organisms.

Our interactions with pets and other domestic and wild animals
are unlikely to diminish in the future. Mounting evidence suggests
that such contacts that result in P. multocida infection can lead to
outcomes ranging from benign to disastrous. Considering the high
prevalence of Pasteurella species as part of the microbiota of domestic
and wild animals, it would be prudent for us to consider zoonotic
transmission of P. multocida as a serious risk for infection.
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